Intuitive robust stability metric for PID control of self-regulating processes.
نویسندگان
چکیده
Published methods establish how plant-model mismatch in the process gain and dead time impacts closed-loop stability. However, these methods assume no plant-model mismatch in the process time constant. The work presented here proposes the robust stability factor metric, RSF, to examine the effect of plant-model mismatch in the process gain, dead time, and time constant. The RSF is presented in two forms: an equation form and a visual form displayed on robustness plots derived from the Bode and Nyquist stability criteria. This understanding of robust stability is reinforced through visual examples of how closed-loop performance changes with various levels of plant-model mismatch. One example shows how plant-model mismatch in the time constant can impact closed-loop stability as much as plant-model mismatch in the gain and/or dead time. Theoretical discussion shows that the impact is greater for small dead time to time constant ratios. As the closed-loop time constant used in Internal Model Control (IMC) tuning decreases, the impact becomes significant for a larger range of dead time to time constant ratios. To complete the presentation, the RSF is used to compare the robust stability of IMC-PI tuning to other PI, PID, and PID with Filter tuning correlations.
منابع مشابه
Robust Lyapunov-based Control of MEMS Optical Switches
In this paper, a robust PID control scheme is proposed for Micro-Electro-Mechanical-Systems (MEMS) optical switches. The proposed approach is designed in a way which solves two challenging and important problems. The first one is successful reference tracking and the second is mitigating the system nonlinearities. The overall system composed of nonlinear MEMS dynamics and the PID controller is ...
متن کاملRobust Lyapunov-based Control of MEMS Optical Switches
In this paper, a robust PID control scheme is proposed for Micro-Electro-Mechanical-Systems (MEMS) optical switches. The proposed approach is designed in a way which solves two challenging and important problems. The first one is successful reference tracking and the second is mitigating the system nonlinearities. The overall system composed of nonlinear MEMS dynamics and the PID controller is ...
متن کاملStability Analysis and Robust PID Control of Cable Driven Robots Considering Elasticity in Cables
In this paper robust PID control of fully-constrained cable driven parallel manipulators with elastic cables is studied in detail. In dynamic analysis, it is assumed that the dominant dynamics of cable can be approximated by linear axial spring. To develop the idea of control for cable robots with elastic cables, a robust PID control for cable driven robots with ideal rigid cables is firstly de...
متن کاملRobust Anti-Windup Control Design for PID Controllers–Theory and Experimental Verification
This paper addresses an approximation-based anti-windup (AW) control strategy for suppressing the windup effect caused by actuator saturation nonlinearity in proportional–integral–derivative (PID) controlled systems. The effect of actuator constraint is firstly regarded as a disturbance imported to the PID controller. The external disturbance can then be modeled by a linear differential equatio...
متن کاملRobust Anti-Windup Control Design for PID Controllers–Theory and Experimental Verification
This paper addresses an approximation-based anti-windup (AW) control strategy for suppressing the windup effect caused by actuator saturation nonlinearity in proportional–integral–derivative (PID) controlled systems. The effect of actuator constraint is firstly regarded as a disturbance imported to the PID controller. The external disturbance can then be modeled by a linear differential equatio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- ISA transactions
دوره 47 4 شماره
صفحات -
تاریخ انتشار 2008